Wristpy Documentation¶


Welcome to wristpy, a Python library for processing and analyzing wrist-worn accelerometer data.
Wristpy provides tools for:
Loading and calibrating raw accelerometer data
Computing physical activity levels using several established metrics (ENMO, MAD, Activity- Counts, MIMS)
Detecting non-wear periods and sleep onset/wake times
Accessing additional sensor streams (temperature, luminosity, capacitive sense, battery, metadata)
For installation instructions and a quick introduction, see Getting Started.
How To Cite¶
If you use wristpy in your research, please cite the following paper:
Santorelli A, Perez F, Vos de Wael R, Rupprecht F, d’Antonio-Bertagnolli JV, Franco A, Kiar G. wristpy: Fast, User-Friendly Python Processing of Wrist-worn Accelerometer Data. 2025. Under review. DOI: https://doi.org/10.5281/zenodo.13883190
Reference¶
GitHub Repository: childmindresearch/wristpy
Issues & Bug Reports: GitHub Issues
Contributing: See Development Guide