Wristpy Documentation¶
Welcome to wristpy, a Python library for processing and analyzing wrist-worn accelerometer data.
Wristpy provides tools for:
Loading and calibrating raw accelerometer data
Computing physical activity levels using several established metrics (ENMO, MAD, Activity- Counts, MIMS)
Detecting non-wear periods and sleep onset/wake times
Accessing additional sensor streams (temperature, luminosity, capacitive sense, battery, metadata)
For installation instructions and a quick introduction, see Getting Started.
How To Cite¶
If you use wristpy in your research, please cite the following paper:
Santorelli, A., Perez, F., de Wael, R. V., Rupprecht, F., d’Antonio-Bertagnolli, J. V., Franco, A., & Kiar, G. (2025). “wristpy: Fast, User-Friendly Python Processing of Wrist-worn Accelerometer Data”, Journal of Open Source Software, 10(114), 8637. https://doi.org/10.21105/joss.08637
Reference¶
GitHub Repository: childmindresearch/wristpy
Issues & Bug Reports: GitHub Issues
Contributing: See Development Guide